您现在的位置:掌上高考 > 高考资讯 > 最新资讯

高中一年级数学复习办法二次函数要点汇总

来源:www.ygwledg.com 2025-05-03

最新资讯

  I.概念与概念表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右侧一般为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a一同决定对称轴的地方。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  =b^2-4ac>0时,抛物线与x轴有2个交点。

  =b^2-4ac=0时,抛物线与x轴有1个交点。

  =b^2-4ac<0时,抛物线与x轴没交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只不过地方不同,它们的顶点坐标及对称轴如下表:

  分析式

  顶点坐标

  对称轴

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  当h0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到.

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就能得到y=a(x-h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体地方就非常了解了.这给画图象提供了便捷.

  2.抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大.若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴肯定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a0)的两根.这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  当△0.图象与x轴没交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.

  5.抛物线y=ax^2+bx+c的最值:假如a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是获得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的分析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设分析式为一般形式:

  y=ax^2+bx+c(a0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设分析式为顶点式:y=a(x-h)^2+k(a0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设分析式为两根式:y=a(x-x?)(x-x?)(a0).

  7.二次函数常识比较容易与其它常识综合应用,而形成较为复杂的综合题目。因此,以二次函数常识为主的综合性题目是中考的热门考试试题,总是以大题形式出现.

热点专题

  • 广西:桂林医学院2021年普通高等教育招生章程
  • 广西:桂林理工大学博文管理学院2021年招生章程
  • 山西财贸职业技术学院2021年招生章程

[]心理专家提醒:高考考

[]陕西汉中高考考试时间